MATH 245 S21, Exam 2 Questions

(60 minutes, open book, open notes)

1. (Question 1 is just instructions; this is a weird requirement of Gradescope)
2. Prove that $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R},(x=\lfloor x\rfloor+y) \wedge(0 \leq y<1)$.
3. Use the division algorithm to prove that $\forall n \in \mathbb{N}, \frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$.
4. Use (some form of) mathematical induction to prove that $\forall n \in \mathbb{N}, \frac{n^{2}+9 n+20}{2} \in \mathbb{Z}$.
5. Solve the recurrence given by $a_{0}=2, a_{1}=3, a_{n}=-4 a_{n-1}-4 a_{n-2}(n \geq 2)$.
6. Let $a_{n}=n^{1.9}+n^{2.1}$. Prove or disprove that $a_{n}=O\left(n^{2}\right)$.
7. Let F_{n} denote the Fibonacci numbers. Prove that $\forall n \in \mathbb{N}_{0}, F_{2 n+1}^{2}-F_{2 n+2} F_{2 n}=1$.
